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Abstract. We present detailed calculations of the diffraction pattern of a powder of bundles of C60 peapods.
The influence of all pertinent structural parameters of the bundles on the diffraction diagram is discussed,
which should lead to a better interpretation of X-ray and neutron diffraction diagrams. We illustrate our
formalism for X-ray scattering experiments performed on peapod samples synthesized from 2 different
technics, which present different structural parameters. We propose and test different criteria to solve the
difficult problem of the filling rate determination.

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals –
61.10.Dp Theories of diffraction and scattering – 61.10.Nz X-ray diffraction

1 Introduction

Since their discovery in 1991 [1], carbon nanotubes have
been the purpose of a large number of studies, dealing
both with their mechanical and electronic properties. In
particular, it has been shown that the intercalation of
electron donors or acceptors [2–4] into single wall car-
bon nanotubes (SWNT) bundles could dramatically mod-
ify the electronic properties of these objects. Rather large
molecules are expected to be inserted into the hollow core
of a nanotube that has been shown to present very sta-
ble adsorption sites [5]. C60 is one of the molecules that
have successfully been inserted into SWNT, and a lot
of studies have recently been achieved on the so-called
“peapods”. Those systems consist of SWNT in which
C60 fullerene molecules are inserted [6]. Their study stands
within the fascinating field of systems in a confined geom-
etry [7–10]. Peapods structural analysis can be performed
on a small number of tubes (and even on a single tube),
using transmission electron microscopy (TEM) [6,11] or
electron diffraction [12,13], or on macroscopic assemblies,
using Raman spectroscopy [11,14,15] or X-ray scatter-
ing [15–17].

Theoretical and experimental studies have already
been published on the diffraction diagram of powder of
SWNT bundles [18,19]. In particular, the importance
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of the distribution of tube diameter on the position of
the (10) Bragg peak in the X-ray and neutron diffrac-
tion patterns was pointed out in reference [19,20]. The
complete study of the influence of all structural parame-
ters of the bundles was performed using a simple numer-
ical model. It was shown that modeling is essential for
a correct determination of the structural parameters for
such inhomogeneous samples of fairly crystallized nano-
objects. Intercalated SWNT bundles form even more com-
plex nano-crystalline systems. The adsorption sites can
be separated into 3 main locations: inside the tubes,
on the outer surface of the bundles (including the so-
called “grooves” [5]) and into the interstitial channels of
the 2D triangular lattice. Adsorption of a molecule into
a SWNT bundle can involve modifications of the 2D trian-
gular lattice (symmetry and/or lattice parameter expan-
sion). These modifications lead to site-dependent diffrac-
tion diagram governed by the structure of the host (the
nanotube bundle), the structure of the adsorbed species
inside the bundles and by crossed interferences between
the host and the molecules adsorbed. The modifications of
the diagrams are also found to be radiation dependent [21].
Therefore, an efficient and correct interpretation of the
diffraction diagram from such complex systems requires
the use of simulation.

The study of the structure of C60 (and C70) peapods by
X-ray diffraction has recently been achieved by Kataura,
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Maniwa and co-workers [15,16]. The authors could esti-
mate the C60 (and C70) filling rates from the analysis
of their measurements. Also, the 1D lattice constant of
the C60 chains inside the tubes was found to be smaller
than those for 3D crystals of C60. More strikingly, the
temperature dependence of the corresponding feature in
the diffraction diagram shows no dependence, indicating a
nearly zero thermal expansion of the C60 chain inside the
tubes, raising questions about possible polymerization of
the C60 chains. X-ray diffraction is found to be a very pow-
erful tool to probe the structure of C60 inside the tubes.
However, further experimental work is needed to under-
stand the properties of C60 peapods. Such experimental
work should include diffraction investigations on samples
showing peapods having various structural characteristics:

1. different tube diameters
2. different filling rates
3. bundles with various sizes e.g. various numbers of

tubes

and particularly, to allow variable degrees of freedom for
the fullerene molecules. Therefore, in this paper, we pro-
pose to give a detailed “step by step” and complete study
of the diffraction patterns of peapods and we discuss the
characteristic signatures linked to the insertion of C60 in-
side the SWNTs. We also show how the variation of differ-
ent structural parameters, such as tube diameter, filling
rate of SWNTs by C60, and C60 adsorption in the outer
groove sites at the surface of the bundles can change the
shape of the diffraction pattern. The reader has to keep
in mind that this report is an attempt to give experimen-
talists the necessary tools to characterize their samples by
X-ray and/or neutron diffraction. Very often it appears
that unexpected impurity phases are present in SWNT
samples, as revealed by a comparison between X-ray and
neutron diffraction patterns measured on the same pow-
der. Therefore both techniques are complementary. In the
first part of this paper, we present the theoretical model
used to achieve the simulations. We consider a powder of
uncorrelated tubes filled with C60 in the second part, and
the third part deals with powder of bundles of peapods.
Polymerization of the C60 chains is also considered. We
finally compare the results of our calculations with exper-
imental diffraction patterns. A large part of the discussion
is concerned with the determination of the filling rate in
the investigated samples. Let us also mention here, al-
though it is beyond the scope of this article devoted to
powder scattering, the interest of structural studies on
partially aligned peapod samples [17], which can allow one
to separate the nanotube and the C60 signals and can thus
give supplementary information.

2 Principle of the calculations

In our attempt to reproduce the diffraction pattern of
peapods, we developed a model based on the general equa-
tions for X-ray and neutron diffraction in the kinematical
approximation [22,23] for which the diffracted intensity
is proportional to the squared modulus of the scattering

amplitude. The latter is defined as the Fourier transform
of a configuration of atoms in the scattering volume. The
diffracted intensity thus writes as follows:

I( �Q) ∝
∣
∣
∣
∣

∫
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fsρ(�r)ei �Q·�rd3�r

∣
∣
∣
∣

2
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where �Q is the scattering vector, ρ(�r) is the density of
scatterer at position �r in the sample, and fs depends both
on the scattering element (e.g. the atomic species) and
on the nature of the incident radiation (fs is a function
of the wave-vector modulus Q for X-rays while it is con-
stant for neutrons). Since we consider the case of a powder
experiment, the diffraction is to be averaged over all the
directions of space or, equivalently, over all the orienta-
tions of the scattering vector in the reciprocal space. The
mean diffracted intensity is thus given by:

I(Q) =
∫ ∫

I( �Q)d2S( �Q)
4πQ2

(2)

where the integration is performed over the sphere of ra-
dius Q and d2S( �Q) is a surface element of this sphere.
Therefore, the model consists in choosing a convenient
–and physically correct– mathematical form of the den-
sity of scatterer ρ(�r). A powerful approach consists in re-
placing the discrete carbon atoms by uniformly charged
surfaces for both nanotubes and C60 molecules, with a
surface atomic density σc ∼ 0.37 atom/Å2. This value is a
little underestimated for C60 molecules (∼ 0.39 atom/Å2)
but we take it as equal for the simplicity. This assump-
tion results in a loss of information concerning the atomic
arrangement at the surface of the objects forming the sam-
ple. It limits the reliability of our results to Q-values lower
than 2 Å−1. Below this value, the diffraction pattern is in-
deed insensitive to the detailed atomic order. It is however
very much affected in this Q range by the medium range
organization e.g. the 2D hexagonal nanotubes bundles and
the 1D C60 packing. In the following, we will therefore be
concerned with the two latter levels of organization in the
framework of the homogenous approximation.

The detailed parameters of the model and the defini-
tion of the different variables used thorough this work are
presented in Figure 1:

– The upper part represents a single tube filled with a
linear chain of C60s. Each C60-filled nanotube will be
considered as a linear superposition of 1D unit cell,
each cell consisting of a cylinder of length L and of a
single C60 molecule located at its center.

– The lower part represents the peapods organized into
bundles e.g. on a 2D hexagonal lattice, the parameter
of which is a function of the tubes diameter forming it.
We introduced a random shift Tz between the position
of the C60 molecules on one tube with respect to the
corresponding position on the central tube to avoid
unrealistic correlations between the positions of the
C60s inside the different nanotubes of the same bundle.
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Fig. 1. Schematic representation of the system of coordinates
and variables used in the calculations.

3 Isolated tubes filled with a chain
of C60 molecules: isolated peapods

3.1 Complete filling of the nanotubes

In this part, we discuss the main features of the diffraction
pattern calculated for a powder of 380 Å long and 13.6 Å
large peapods that is obtained by stacking 40 cylinders
of length 9.5 Å, each cylinder containing a 3.5 Å radius
sphere at its center (see Fig. 1). This value of 9.5 Å is
not deduced from measurements. It must be considered
as a parameter of the model. We present in Figure 2 the
calculated intensity for this object (bottom), for the tube
alone (top) and for a C60 chain alone (middle).

Let It be the intensity diffracted by a powder of empty
nanotubes. It is a pseudo-periodic oscillating function
which is proportional to the squared modulus of the zero
order cylindrical Bessel function J0, as it appears in the
following expression of It:

It(Q) ∝
∫ π

u=0

∣
∣
∣At( �Q)

∣
∣
∣

2

sin(u)du (3)

Fig. 2. Calculations of the intensity diffracted by several pow-
ders. a) nanotube of radius r = 6.8 Å and of length 380 Å.
b) linear chain of 40 C60 molecules. c) peapod (plain line),
sum of the intensities from a) and b) (dotted line), and crossed
term (dashed line).

with At the amplitude scattered by the empty nanotube:

At( �Q) = 2πLrhfsσcJ0 (Qrh sin(u))
sin
(

QL
2 cos(u)

)

QL
2 cos(u)

×
40∑

n=0

eiQnL cos(u) (4)

and where u, L and rh are defined in Figure 1 and where n
labels the 1D unit cells (cylinders of length L).

Let Ic be the intensity diffracted by a powder of linear
chains of C60 molecules:

Ic(Q) ∝
∫ π

u=0

∣
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∣
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2

sin(u)du (5)

where Ac is the amplitude scattered by the linear chain of
C60 molecules:

Ac( �Q) = 4πr2
C60

fsσc
sin(QrC60)

QrC60

40∑

n=0

eiQnL cos(u) (6)
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and where rC60 is the radius of a C60 molecule (3.5 Å) [24].
This intensity is also a pseudo-periodic oscillating func-
tion, but with a pseudo-period that is nearly twice as long
as the one of the nanotubes. Indeed, the radius of a C60

is nearly half the radial dimension of the tube. Another
interesting feature of the latter curve is the asymmetric
peak at 0.68 Å−1, which results from the periodic posi-
tions of C60s along the linear chain [25].

The first minimum of the intensity diffracted by the
whole peapod (pointed by an arrow in Fig. 2) is located
at Q = 0.44 Å−1, whereas it was located at 0.38 Å−1 in
the empty SWNT diffraction pattern. Following the work
on gas adsorption inside SWNT by Maniwa et al. [26],
Kataura et al. gave a simple explanation for this fea-
ture [15]: the reason for the presence of this minimum
at this precise value of Q is due to the sum of the struc-
ture factors of the tube and of the C60 which equals zero
for Q = 0.44 Å−1. We will discuss this effect in slightly
different term. Let us write the intensity Ip(Q) diffracted
by a peapod as follows:

Ip(Q) ∝
∫ ∫ ∣

∣
∣At( �Q) + Ac( �Q)

∣
∣
∣

2

d2 �Q. (7)

According to the fact that At and Ac may be complex,
relation (7) can be developed as:

Ip(Q) ∝ It(Q) + Ic(Q) + 2
∫ ∫ [

Re(At( �Q))Re(Ac( �Q))

+Im(At( �Q))Im(Ac( �Q))
]

d2 �Q (8)

where Re(At) and Im(At) stand for the real and imaginary
parts of At, respectively. Relation (8) can be rewritten as:

Ip ∝ It + Ic + ICI . (9)

If attention is given to Figure 2c, it is clear that the profile
of Ip is quite different from (It+Ic). This latter quantity is
indeed the signature of a sample containing a tube decor-
related from a linear chain of C60. In a peapod sample,
there is a strong correlation in the relative positions of
the tube and the chain of C60, since the C60s are located
inside the tube. This correlation is revealed by the pres-
ence of the crossed interference term ICI which can be
positive or negative. At Q = 0.44 Å−1, the crossed term
compensates the (It + Ic) term, lowering Ip to zero or
nearly zero [27]. This value for Q is accidently the same
as that of the (10) peak position for a bundle made of
empty SWNTs stacked into a 2D hexagonal lattice. This
coincidence will cause dramatic changes in the diffraction
pattern relative to peapods bundles (see Sect. 4).

The increase of the tube diameter induces a decrease
of the oscillation period as it is expected when considering
larger diffracting object (see Fig. 3). The C60 periodicity
characteristic peak at 0.68 Å−1, as well as its first har-
monic at 1.36 Å−1, are observable in all the calculated
diffraction profiles. For peapods of radius r = 5.42 Å (for
example C60@(8,8) peapods) the first peak is not sepa-
rated from the first oscillation, but is clearly visible. The
same behavior is observed for r = 8.1 Å peapods (for

Fig. 3. Upper part of the figure: calculated powder diffraction
patterns of peapods for different tube radii: 5.42 Å (8,8), 6.8 Å
(10,10), 8.1 Å (12,12), with an inter-C60 distance L equal to
9.5 Å. Lower part of the figure: calculated diffraction patterns
for different inter-C60 distances L and for a r = 6.8 Å tube.

example C60@(12,12) peapods) on the second oscillation,
but the peak amplitude is weaker. In fact, the larger the
tube diameter and the weaker this peak. The latter effect
can be easily understood: an increase of the tube diam-
eter implies an increase of the tube surface which leads
to a preponderance of the response of the tubes over the
response of the C60 chains, in which the number of scat-
terers remains unchanged. The cases of C60@(8,8) and
C60@(12,12) peapods are discussed here as extreme cases
for the influence of the tube diameter. However, it must
be pointed out that the insertion of C60 in a (8,8) peapod
is unlikely due to the too small diameter of the tube, and
C60s inside a (12,12) peapod would possibly lead to zigzag
or helical chains in place of linear chains, since the center
of the tube is no longer the most favorable location for
C60 regarding to van der Waals interactions.

The bottom part in Figure 3 reveals the consequences
of a change in the inter-C60 length L inside the linear
chain. A downshift of the characteristic peak of C60s pe-
riodicity is evidently observed when L increases, but we
also note a reinforcement of its intensity. One remarks
a striking effect: although the relative density of C60 in-
creases, the characteristic peak relative to the C60 pe-
riodicity strongly decreases. This is due to the multi-
plication factor arising from the intensity diffracted by
a C60 molecule, which reaches its first zero at 0.9 Å−1, as
shown in Figure 2. The closer the peak position to this
value, the weaker the peak. One must be careful with the
fact that the respective proportion between tube and C60s
is no longer the pertinent parameter to account for the ex-
planation of the changes in the peak intensities. Thus, it
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may prove dangerous to focus only on the relative inten-
sity of this peak, and it seems necessary to consider the
whole diffraction pattern to derive reliable structural in-
formation.

In several cases, the use of an analytical formula
can prove more comfortable than the method presented
above. For infinite tubes, numerical calculations are per-
formed after the limit of infinite tube length was taken
in the above equations, leading to the following equa-
tion (demonstrated in Appendix A, Eq. (16)), where the
first term comes from the Fourier transform of the struc-
ture projected in a plane perpendicular to the tube axis,
while the second one comes from the periodicity of the
C60 chains:

Ip(Q) ∝ f2
s

Q

((

2πLrhσcJ0(Qrh) + 4πr2
C60

σc
sin(QrC60 )

QrC60

)2
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4πr2
C60
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sin(QrC60)

QrC60

)2
)

. (10)

In this expression Int(QL
2π ) is the integer part of (QL

2π ).

3.2 Partial filling of the nanotubes

In the case of a real sample, it seems reasonable to consider
that all tubes may not be fully filled with C60s, despite
efforts made to obtain filling rates as high as possible [11].
Two different hypotheses are discussed here.

The first hypothesis is to consider a random filling of
the tubes without assuming clustering effects inside the
tubes: the molecules are randomly positioned within a
tube, the only constraint being a minimum distance of L
between them (one may note that it implies that in the
limiting case of 100% filling, the molecules necessarily
form ordered chains). Calculations are performed within
the finite tube length model, for a given filling ratio of the
nanotubes. The effects of a random incomplete filling of
the nanotubes are presented in the upper part of Figure 4.
One observes the vanishing of the C60-C60 characteristic
peak with decreasing filling rates; it completely disappears
for filling rates below 85%. If we compare the shapes of the
85% and the 100% diffraction profiles, one finds that the
minimum at 0.44 Å−1 for the 85% filled sample no longer
lowers to zero. The additional intensity can be attributed
to the effect of the disorder induced by the random fill-
ing of the nanotubes by the C60 molecules. Moreover, the
first minimum in intensity shifts to lower Q values for de-
creasing rate of fullerenes, which can be explained as in
Figure 2 by compensation effects between tube, fullerene
and interference terms.

As a second hypothesis, one can consider the par-
tial filling of the tubes with long (‘quasi-infinite’) chains
of C60. We assume here that the molecules tend to cluster
within nanotubes. Indeed, this should correspond to a low
energy configuration of the system, the energy being low-
ered by the attractive C60-C60 interactions. This hypothe-
sis is supported by observations reported in reference [13].

Intensity (arb. units)
Intensity (arb. units)

100%

85%

75%

50%

0 0.5 1 1.5 2

Q (A-1)

100%

75%

50%

Fig. 4. Calculated diffracted intensities of a powder of iso-
lated nanotubes (rh = 6.8 Å). Up: for random filling by the
C60 molecules (tube length is 380 Å); down: for incomplete
filling by long (‘infinite’) C60 chains. Filling rates indicated in
the figure are the same for all tubes in each case considered.

Calculated diffraction patterns for different filling rates
(50%, 75% and 100%) are presented in the lower part of
Figure 4. Here we use the infinite tube length model (de-
tailed calculations are given in Appendix B). As it was
already mentioned in the first hypothesis, we observe the
vanishing of the C60-C60 characteristic peak at low filling
rates, but it interestingly disappears here for a filling rate
of 50% which is much lower than the 85% observed in
the first part. This is due to the long chains assumption:
the C60-C60 distance is preserved for the different filling
rates. Another feature of these diffraction patterns is that
the first minimum goes to zero for all filling rates, contrar-
ily to what was found within the first hypothesis, which
is due to lower disorder.

If one takes into account the differences pointed out
between the 2 hypothesis discussed here, one should in
principle be able to determine the way a sample of iso-
lated peapods is filled. Unfortunately, the Q range around
0.44 Å−1 is usually perturbed by parasitic signals (intense
scattering at small wave-vectors), so it is very difficult to
use the value of the first minimum of intensity as a clue to
determine the filling mode. As a result, the C60-C60 char-
acteristic peaks remain the only observable features for the
estimation of the filling rate and of the filling mode. An im-
portant result from our calculations is that C60 molecules
in isolated peapods with a random filling rate below 85%
and peapods with a long chain filling rate under 50% are
undetectable by diffraction.
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3.3 Polymerized C60 molecules inside nanotubes

One of the remarkable properties of the C60 molecule is
its ability to form covalent bonds through quite differ-
ent routes. In crystalline C60, polymers can be obtained
(i) by photopolymerization, (ii) under pressure and at
high temperature, (iii) in doped samples [28,29]. Photo-
induced [11,15] and charge transfert induced [30] polymer-
ization have also been demonstrated in C60 peapods, using
Raman spectroscopy. It is interesting to consider the effect
of polymerization on diffraction patterns. Let us consider
peapods where the chains can be formed of n-polymers
(n = 1: monomers, n = 2: dimers, n = 3: trimers...).
For the sake of simplicity, we deal with the case of com-
pletely filled nanotubes. The distance Lb between bonded
C60 molecules is taken to be 9.2 Å as in crystalline poly-
merized samples, and the distance L between unbonded
molecules is fixed at 9.5 Å as above. The distance between
monomers is smaller in peapods than in crystalline C60,
where it is equal to about 10 Å, possibly because of inter-
actions with the nanotubes. However, there is no reason
to take a smaller value for the distance between bonded
molecules because it is mainly determined by the covalent
bonding between them. It is shown in Appendix C that
the scattered intensity of a powder of peapods filled with
chains of n-polymers writes:

Ip(Q) ∝ f2
s

Q

((

2πrh(L + (n − 1)Lb)σcJ0(Qrh)

+ 4πr2
C60

σcn
sin(QrC60)

QrC60

)2

+ 2(1 − δM,0)
M∑

k=1

(

4πr2
C60

σc
sin(QrC60 )

QrC60

× sin(kπnLb/(L + (n − 1)Lb))
sin(kπLb/(L + (n − 1)Lb))

)2
)

(11)

where the second term appears only for Q values such that
M –the integer part of (Q(L+(n−1)Lb)

2π ) – is not zero. Calcu-
lated patterns for n = 1, 2 and 3 are drawn in Figure 5. At
each Q = k2π/(L+(n−1)Lb) value (with k integer), asym-
metric peaks characteristic of the chain periodicity can be
observed. Despite the change of the period –equal to (L+
(n− 1)Lb) – with n, the spectra look quite similar. It can
easily be explained from equation (11): the asymmetric

peak intensity is multiplied by
[

sin(kπnLb/(L+(n−1)Lb))
sin(kπLb/(L+(n−1)Lb))

]2

,
which is close to zero except for k = n, 2n, ... The first
intense peak of the n-polymer diffraction pattern is thus
located at Q = n2π/(L + (n − 1)Lb): Q = 0.672 Å−1

for dimers, 0.676 Å−1 for trimers, to be compared with
0.661 Å−1 for monomers. The upper value, corresponding
to infinite polymers, is Q = 2π/9.2 = 0.683 Å−1.

In summary, scattering analysis of polymerization of
C60 molecules in peapods samples should be based on

Fig. 5. Component of the calculated diffracted intensities rela-
tive to periodicity effects (only the second term of equation (11)
is drawn) of a powder of isolated nanotubes (rh = 6.8 Å), for
C60 monomers (upper line), dimers (middle line) and trimers
(lower line) chains inside the tubes.

a careful study of the position Q0 of the first intense
asymmetric peak, and on the search for lower intensity
peaks at kQ0/n (n = 2, 3...; k = 1 to (n − 1)) to identify
n-polymers.

4 Bundles of peapods

4.1 Complete filling

Peapods are packed into bundles where they are main-
tained together by van der Waals inter-tubes interac-
tions. This organization is clearly visible on TEM pic-
tures [11,15,16]. In this part, we calculate and discuss the
diffraction pattern for such objects. Calculations are per-
formed both for peapods of finite length and for peapods
of infinite length (as detailed in Appendices A and B).
The relative positions of the C60 chains along the tube
axes (Tz in Fig. 1) are assumed to present no correlation
from one tube to another. Indeed, a C60 chain interacts
the most with the nanotube in which it is located, and
nanotubes within a bundle present different helicities [31].

Figure 6 shows the comparison between the diffraction
profiles calculated for a powder of bundles of 12 empty
nanotubes and that of bundles of 12 peapods, with differ-
ent tube radii. In all cases, we consider 380 Å long nan-
otubes organized on a 2D hexagonal lattice with a 3.2 Å
van der Waals length between 2 adjacent nanotubes. Let
us first consider the upper part of Figure 6, which deals
with (10,10) tubes and peapods, of radius r = 6.8 Å. For
peapods, the additional peaks characteristic of the 1D pe-
riodicity of the C60 chains are indicated by an arrow. We
remark that most of the characteristic peaks observed in
the diffraction pattern of the empty SWNT bundles show
up in the diffraction pattern of the peapod bundles, ex-
cept those located in the low Q range where a lack of
intensity is obtained for the peapods. An important dif-
ference between the pattern of the peapod bundles and
the empty nanotube bundles is thus the disappearance
of the (10) Bragg peak at 0.44 Å−1. This peak (of finite
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Fig. 6. Comparison between the calculated intensities scat-
tered by a powder of bundles of 12 empty nanotubes (upper
curve of each part) and bundles of 12 peapods (lower curve
of each part) for (10,10) nanotubes (upper part) of radius
r = 6.8 Å, (8,8) nanotubes (middle part) of radius r = 5.42 Å
and (12,12) nanotubes (lower part) of radius r = 8.1 Å. The
tube length was fixed at 380 Å in all the calculations. The
arrows in the upper part point toward assymetric peaks char-
acteristic of the 1D periodicity of C60 chains.

width because of the small bundle size) is replaced by a
minimum delimited by two smaller peaks. This can be ex-
plained on the basis of Section 3 results, since we observed
that the intensity diffracted by a single peapod lowers to
zero at 0.44 Å−1, which is around the position of the (10)
lattice peak of the bundles. This important extinction pro-
cess in the case of SWNT bundles has already been found
and discussed for different kinds of intercalated molecules
like gas molecules [15,32] or in iodine doped nanotubes
samples [21]. Middle and lower parts of Figure 6 show that
the extinction phenomenon is modified when the tube di-
ameter is changed. For example, we consider the case of
bundles of 12 empty nanotubes and 12 peapods of ra-
dius r = 5.42 Å ((8,8) tubes, middle part of Fig. 6) and
r = 8.1 Å ((12,12) tubes, lower part of Fig. 6). One can see

that the (10) peak is not split into two parts for the bundle
of (8,8) peapods, but appears shifted to lower Q values.
By contrast, this peak completely disappears in the case
of the bundle of (12,12) peapods. When tube is thinner or
larger in diameter, the progressive loss of the accidental
adequate conditions implies the extinction phenomenon to
be lost.

It is important to be aware that the extinction can oc-
cur for values of Q that are slightly different from the (10)
peak position. In that case the (10) peak does not ap-
pear split, but seems shifted because only one side of
the peak is lowered. Therefore, a direct interpretation of
such apparent shift in terms of a change of the lattice
parameter is inappropriate, and direct conclusions about
structural changes based on the observation of the (10)
peak alone, prove very hazardous. The analysis of peapods
diffraction patterns is consequently not straightforward
and should be based on comparison between measure-
ments and calculations.

4.2 Partial filling

As for isolated tubes, all tubes may not be fully filled with
C60s. In this section, 4 different filling modes are discussed.

The first case (case a) consists in a random filling,
where each tube of the bundle is filled as described in
Section 3.2. Calculations are performed within the finite
tube length model. In the 3 other cases, which are treated
within the infinite tube assumption (detailed calculations
are given in Appendix B), the C60s are all stacked into
long chains, but the way these chains are distributed into
the bundles changes with the case. One can indeed con-
sider an homogeneous filling (case b), where the tubes are
all filled with the same number of C60 molecules, or an in-
homogeneous filling (case c), where the filling rate of each
tube of the bundle is slightly different. The last case to be
discussed (case d) consists in a mix of fully filled bundles
and empty bundles (see the right part of Fig. 7).

We present the results for filling rates of 85% and 50%
for bundles of 12 nanotubes of radius r = 6.8 Å in the
left part of Figure 7. The main difference between all
diffraction patterns calculated for a 85% filling rate and
all those calculated for a 50% filling rate is visible in the
low Q range. The (10) Bragg peak is indeed still splitted
and almost invisible at the 85% filling rate, while it clearly
reappears at the 50% filling rate. This observation can be
explained by the fact that the accidental conditions allow-
ing the extinction of the (10) Bragg peak are progressively
lost when the proportion of C60 decreases in the sample.

If more attention is given to the a), b), c) and d)
diffraction profiles for a given filling rate, other features
linked to the different filling modes can be extracted from
the figure. One can first consider the Q range below
0.6 Å−1. The intensity in this region is the least for the b)
configuration, which is the least disordered configuration.
If we compare with the inhomogeneous filling (mode c),
and then with the random filling (mode a), we observe a
progressive increase of the intensity in the low Q range,
corresponding to the progressive increase of the disorder
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Fig. 7. Left top: Diffraction patterns of 85% filled bundles of 12 peapods. Left bottom: Diffraction patterns of 50% filled bundles
of 12 peapods. All tubes have a radius of 6.8 Å. Right part: Schematic representations of the 4 different filling modes used in
calculations: a) random positions for the C60 molecules within each tube, same filling for each tube, b) long C60 chains, same
filling for each tube, c) long C60 chains, inhomogeneous filling of the different tubes within a bundle, d) mix of full and empty
bundles.

in the system, as already mentionned in Section 3.2. The
d) case must be considered separately from the other cases
because the intensity in the low Q range is here the sum
of the intensities of 2 decorrelated systems (full peapods
and empty nanotubes).

One can also focus on the C60-C60 characteristic peak.
This asymmetric peak is clearly visible on the diffraction
profiles of the b), c) and d) filling modes, even for the
50% filling rate, whereas it never appears at this rate for
isolated peapods. In addition, this peak is invisible at both
filling rates in the a) filling mode. Thus, the observation
of such a feature in an experimental diffraction pattern
should stand as the signature of a long chain organization
of the C60 molecules inside the tubes.

4.3 Chains of C60 molecules in the outer groove sites
of the bundles

We finally discuss the effects induced by the filling of the
channels located at the bundle surface with linear chains

of C60s, for bundles of various size (Fig. 8). All tubes have
a radius of 6.8 Å. When we consider the diffraction pat-
tern of a 6 peapods bundle where the external channels
have been completely filled, we note 2 main differences
with regards to a naked peapod bundle. First, the peak
at 0.68 Å−1 is significantly reinforced due to the addi-
tional C60 molecules in the external channels. Secondly,
the intensity in the low Q range as well as between 1
and 1.5 Å−1 appears strengthened. As it is shown in Fig-
ure 2, the C60 response is high in these Q ranges, so this
effect is just due to the increase of the C60 proportion
in the sample. It is evidently clear that the higher the
number of tubes in the bundle, the weaker the effect de-
scribed just above. The reason for that lies in the simple
fact that volume grows faster than surface when the size
of the bundle increases. According to these results, we are
able to conclude that an experimental diffraction pattern
with a high intensity in the 1 to 1.5 Å−1 Q range may
be relative to a sample made of small sized bundles, satu-
rated with C60s in both the inner space of the tubes and
in the external channels.



J. Cambedouzou et al.: On the diffraction pattern of C60 peapods 39

Fig. 8. Effect on diffraction pattern of the filling of the external channels with C60s linear chains for different sizes of bundles.
All tubes have a radius of 6.8 Å and are 380 Å long. a) 4 tubes. b) 6 tubes compared with a 6 tubes naked bundle (dotted line).
c) 12 tubes.

4.4 Determination of the filling rate

In this section we try to define a method to determine
the filling rate from experimental data. Two criteria are
proposed which are based on the analysis of the results
obtained from the model. As it was explained previously,
the (10) Q range is strongly perturbed, so this Q range is
disregarded. The first criterion consists to remark that the
peak centered around 0.7 Å−1 contains two contributions
(Fig. 7): i) the response of the C60 lattice at 0.663 Å−1

and ii) the (20) reflection of the bundle lattice centered
at 0.706 Å−1. The ratio of the two respective amplitudes
is expected to vary as a function of the filling rate. How-
ever two problems arise. The first one concerns the type of
filling which is unknown. The second concerns the back-
ground determination. We assume that the background
can be represented by a straight line between 0.6 Å−1 and
0.8 Å−1 as is shown in the inset of Figure 9a. In Fig-
ure 9a the amplitude ratio is drawn as a function of the
filling rate and for the two extreme types of filling, i.e.
random and homogeneous (a) and b) cases, respectively).
Cases c) and d) have intermediate behaviors, so they are
not presented in this figure. Thus for a given experimental
amplitude ratio (on vertical axis) one gets a range for the
filling rate.

The second criterion consists to use: i) the amplitude
of the C60 1-D lattice peak around 1.3 Å−1 as this peak
arises in a Q range where the C60 contribution is strong,
and ii) the amplitude of the (21) reflection of the bundles
around 1.1 Å−1 as the C60 contribution is small in this
Q range. The calculated diagrams of Figure 7 were ana-
lyzed with a 3 peaks model from which we extracted the
two amplitudes (Fig. 9b). Again the background estima-
tion has a large incidence on the results.

The second criterion seems to be more reliable as
it presents a smaller dependence on the type of filling.

It is of easier use. However it has been established for
SWNT bundles corresponding to diameters occuring in
the case of electric arc or laser synthesis, i.e. centered
around 1.4 nm and with a small dispersion in diameter
distribution (FWHM ≤ 2 Å). In the next section these
criteria are applied to the estimation of the filling rate in
two different samples.

5 Comparison between calculated
and experimental diffraction patterns

Diffraction patterns were performed using a powder
diffractometer equipped with a curved position sensitive
detector INEL CPS120 allowing one to measure simulta-
neously a range of 2θ angles from 2 to 120◦. A wavelength
of 1.542 Å was used. We measured the diffraction pattern
of two different peapod samples (powder sample or numer-
ous small pieces of bucky paper in glass capillaries). Sam-
ple A (Fig. 10a) was synthesized as follows: the SWNT ma-
terial was first soaked in concentrated nitric acid (HNO3

65%) and sonicated for approximatively 30 min, then
treated in boiling HNO3 at 140–150 ◦C for 4 hours. Af-
ter sedimentation of the acid treated SWNT material in
distilled water, SWNTs were separated from the acidic
supernatant by centrifugation. The acid treated mate-
rial was washed several times with distilled water (several
centrifuge-washing-decantation cycles) then washed twice
with ethanol. Finally, the SWNT material was dried un-
der low pressure during overnight. The dried acid treated
and washed SWNTs were subsequently heated in air at
420–430 ◦C for 30–40 min. After oxidation, the material
was mixed with an excess of C60 powder in a glass tube.
The glass tube was sealed under high vacuum, then heated
at temperatures 550–600 ◦C for 72 hours. After heating,



40 The European Physical Journal B

Fig. 9. Filling rate determination. a) First criterium giving
the amplitude ratio I(0.663 Å−1)/I(0.706 Å−1) as function of
the filling rate p (see the inset), calculated for randomly filled
(empty circles) and homogeneously filled (full circles) bundles
of peapods. b) Second criterium: amplitude ratio of the peaks
around 1.3 Å−1 and 1.1 Å−1 as function of p (see the inset),
calculated for randomly filled (empty circles), inhomogeneously
filled (empty triangles) and homogeneously filled (full circles)
bundes of peapods. The dashed and dotted horizontal lines rep-
resent the experimental finding for the two investigated sam-
ples A and B.

the ampoule was cooled down to room temperature and
opened. The excess of C60 was removed by washing the
SWNT material with toluene. Finally, the material was
washed once with ethanol and dried under reduced pres-
sure for overnight. The preparation method of sample B
(Fig. 10b) has been described previously [11].

The diffraction patterns of these two samples look
quite different. We note the presence of a broad under-

lying structure from 1 to 2.2 Å−1 in the diffraction pat-
terns of sample A (dotted line in Fig. 10a). Applying the
two criteria defined in Section 4.4 to the determination of
the filling rate (after substracting the dotted line for sam-
ple A), one obtains 75 to 95% (using the first method)
compared to 85% (second method) for sample A, and 77
to 96% (first) compared to 95% (second) for sample B (see
the horizontal lines in Fig. 9). However, as is shown below,
if the criteria can be applied to sample B where charac-
teristic C60 peaks are clearly observed, they only give an
estimation of a upper value of the filling rate for sample A.

Diffraction profiles were fitted by optimized calcu-
lations. Calculated diffraction patterns were convoluted
with a convenient resolution function in order to be com-
pared with the experimental profiles. We also introduced
a distribution of tube diameter in the calculation. The
latter was considered to be of Gaussian shape [19,20].

Concerning sample A, the comparison with the pris-
tine SWNT powder allows us to put forward the following
main characteristics of the peapod diffraction profile: a
weak (10) peak, an enlargement of the second peak at
its low Q-side (0.68 Å−1) and additional intensity around
1.3 Å−1. We obtained the best fit of the diffraction pat-
tern considering a structure made of small bundles of
6 peapods, with a large tube radius distribution centered
around 6.8 Å and chains of C60s in the external chan-
nels of the bundles. Considering the 4 filling modes de-
scribed above, a very high filling rate implies a sharp
peak at 0.68 Å−1, standing for the C60-C60 periodicity.
Such a sharp peak is not observed in the diffraction pat-
tern, so we introduced a distribution of C60-C60 lengths
from 9 to 10 Å into the model, leading to an improve-
ment of the fit. This distribution could testify to the pres-
ence of mixed dimer, trimer or n-polymers chains of C60

into the tubes in this sample. However, if by-products
of the chemical treatment were present inside nanotubes
with the C60 molecules, this would explain the decrease of
the (1,0) peak intensity together with an enlargement of
the C60 periodicity peak since periodicity would be per-
turbated. We should thus note here that on the basis of
the present results, the filling rate values determined here,
above 75%, might be over-estimated.

Concerning sample B, the general shape of the diffrac-
tion profile is better fitted. Different kinds of filling modes
have been studied in order to give a reasonable range for
the filling rate. If a d) filling mode is chosen, we obtain
the plain line of Figure 10b, and a filling rate of about
75%. The model includes 30 tubes per bundle with a very
narrow distribution of tube radii centered at 6.76 Å (same
radius as in Ref. [16]), and an inter-C60 length of 9.8 Å.
The good agreement between the calculation and the rest
of the diffraction pattern is the proof of a reliable charac-
terization of the sample and of a high quality process of
synthesis.

The diffraction patterns measured for both samples
show up a clear difference in their respective structures.
Clear features in the diffraction pattern of sample B al-
low an unambiguous characterization and a reliable esti-
mation of its filling rate. Furthermore, our results are in
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Fig. 10. Experimental diffraction patterns of peapod samples. a) Peapod sample A (upper line), corresponding MER pristine
SWNT sample (lower line). The dotted line is the baseline used for the fits. b) Peapods sample B (upper line) and a calculation
of its diffraction profile (lower line).

good agreement with what was previously determined for
this sample in other X-ray diffraction and transmission
electronic microscopy studies [15]. On the other hand, one
must be more careful with the determination of the filling
rate of sample A, as noted above.

6 Conclusion

We presented in detail the formalism to calculate the
diffraction diagram of peapods at different level of organi-
zation: isolated and organized into bundles. This formal-
ism allows to numerically investigate the main character-
istics of the diffraction patterns of peapod samples, and
to discuss those driving to a pertinent characterization
of real samples. In particular, the isolated peapod study
shows how the concentration of C60s inside the tubes can
shift the positions of the diffracted intensity zeros, and
consequently lead to an accidental extinction of the (10)
Bragg peak in the diffraction profile of peapod bundles,
whereas there is no change in the bundle arrangement.
These results show that one must be extremely careful
about the correct interpretation of the changes in posi-
tion and intensity of the (10) Bragg peak in experimental
data concerning peapods and also all the inserted sam-
ples of SWNTs. Furthermore, we saw that the diffraction
pattern of peapods has to be considered in its entire 0
to 2 Å−1 Q range in order to derive reliable characteriza-
tion of the sample. In particular, much attention has to
be paid to both the intensity and shape of the C60-C60

characteristic peaks.
Those features are discussed in the measured diffrac-

tion patterns of two different samples.
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Appendix A

The calculation of the scattering pattern from a powder
of peapods is detailed in this appendix for the case of
nanotubes of infinite length.

For a given wavevector �Q the intensity coming from
an isolated peapod is:

I( �Q) = F ( �Q)F ∗( �Q).

The form factor of a peapod of length L, containing one
C60 molecule at half height, writes

F ( �Q) = fs

(

2πrhLσcJ0(Q||rh)
sin(QzL/2)

QzL/2

+ 4πr2
C60

σc
sin(QrC60 )

QrC60

)

. (12)

In this expression
−→
Q|| is the projection of the wave-

vector �Q perpendicularly to the nanotube axis and Qz

is its projection along the axis.
For a peapod of length NcL, it becomes

F ( �Q) = fs

(

2πrhLσcJ0(Q||rh)
sin(QzL/2)

QzL/2

+ 4πr2
C60

σc
sin(QrC60)

QrC60

)
Nc−1∑

n=0

exp(iQznL). (13)



42 The European Physical Journal B

The intensity per length unit thus writes

I( �Q) = f2
s

[

2πrhLσcJ0(Q||rh)
sin(QzL/2)

QzL/2

+ 4πr2
C60

σc
sin(QrC60)

QrC60

]2
1

NcL

×
Nc−1∑

n=0

exp(iQznL)
Nc−1∑

m=0

exp(−iQzmL). (14)

Now we consider an infinite tube: Nc → ∞. Using the
relation

lim
Nc→∞

1
NcL

Nc−1∑

n=0

exp(iQznL)

×
Nc−1∑

m=0

exp(−iQzmL) =
2π

L2

∞∑

k=−∞
δ(Qz − 2πk/L)

where δ(x) is the Dirac distribution and where k is an inte-
ger, it follows that the intensity per unit length scattered
by an isolated peapod of infinite length writes

I( �Q) = f2
s

[

2πrhLσcJ0(Q||rh)
sin(QzL/2)

QzL/2

+ 4πr2
C60

σc
sin(QrC60)

QrC60

]2
2π

L2

∞∑

k=−∞
δ(Qz − 2πk/L)

which can be written as:

I( �Q) = f2
s

2π

L2

[(

2πrhLσcJ0(Q||rh)
sin(QzL/2)

QzL/2

+ 4πr2
C60

σc
sin(QrC60)

QrC60

)2

δ(Qz)

+
(

4πr2
C60

σc
sin(QrC60)

QrC60

)2∑

k �=0

δ(Qz − 2πk/L)

]

. (15)

The δ(Qz) dependent term is the Fourier transform of
the structure projected on a plane perpendicular to the
nanotube axis, while the δ(Qz − 2πk/L) dependent term
comes from the periodicity of the C60 chain.

Now we use equation (2) to calculate powder average.
If g(Q||, Qz) represents the factor multiplicating δ(Qz) in
the previous expression, the integration of the δ(Qz) de-
pendent term over the angles u and ϕ gives
∫ 2π

0

dϕ

∫ π

u=0

g(Q||, Qz)δ(Q cos(u)) sin(u)du =
2π

Q
g(Q, 0)

where Qz = Q cos(u). The integration of the δ(Qz −
2πk/L) dependent term reduces to

∑

k �=0

∫ 2π

0

dϕ

∫ π

u=0

δ(Q cos(u) − 2πk/L) sin(u)du

which is equal to [22π
Q Int(QL/2π)]. Here Int(QL/2π) is

the integer part of (QL/2π): the asymmetric shape of the
peaks characteristic of the C60 1D periodicity can be un-
derstood through this formula (the sawtooth line shape).

It follows that the intensity scattered by a powder of
isolated peapods is given by

Ip(Q) =
(2π)2f2

s

QL2

[(

2πrhLσcJ0(Qrh)

+ 4πr2
C60

σc
sin(QrC60)

QrC60

)2

+ 2Int(QL/2π)
(

4πr2
C60

σc
sin(QrC60 )

QrC60

)2
]

. (16)

Let us now calculate the intensity scattered by a pow-
der of peapod bundles. The expression of the form factor
of a bundle of peapods of length NcL is:

F ( �Q) = fs

∑

i

[

2πrhLσcJ0(Q||rh)
sin(QzL/2)

QzL/2

+ 4πr2
C60

σc
sin(QrC60)

QrC60

exp(iQzTz(i))

]

× exp(i
−→
Q||

−→
Ri)

Nc−1∑

n=0

exp(iQznL) (17)

where
−→
Ri is the tube i position and Tz(i) is a random num-

ber between 0 and L (see Fig. 1). Using the above proce-
dure, one finds that the intensity scattered by a powder
of peapod bundles is given by

Ip(Q) =
(2π)2f2

s

QL2

[(

2πrhLσcJ0(Qrh)

+ 4πr2
C60

σc
sin(QrC60 )

QrC60

)2∑

i,j

J0 (QRij)

+ 2NT Int(QL/2π)
(

4πr2
C60

σc
sin(QrC60 )

QrC60

)2
]

. (18)

The lattice term is (
∑

i,j J0 (QRij)) where Rij is the dis-

tance between tubes i and j (Rij = |−→Ri −−→
Rj |); NT is the

number of tubes per bundle. If one considers a distribu-
tion of tube diameters inside bundles, or distribution of
bundle sizes, one can extrapolate the average procedures
presented in reference [19].

Appendix B

This appendix details some intensity calculations in the
case of a powder of nanotube bundles, for incomplete fill-
ing of the nanotubes by ‘long’ (quasi-infinite) chains of
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fullerenes. The chains within each tube are assumed to be
sufficiently long to allow one to describe their scattered
intensity with Dirac distributions. This assumption im-
plies that the formula derived below cannot be used for
too small filling rates.

Giving the site (n) of a molecule in tube (i), we de-
fine the filling factor of the site (i, n) by a function f(i, n)
which is 1 if the site is occupied and zero otherwise. To cal-
culate the intensity Ip(Q) in the case of partial filling, one
multiplies the C60 term in equation (17) in Appendix A
by this filling factor.

One follows the orientational average procedure given
in Appendix A but with I( �Q) replaced by its average over
occupancies f(i, n). One finds

Ip(Q) =
(2π)2f2

s

QL2







∑

i,j

[

(2πrhLσcJ0(Qrh))2

+ 〈p(i)p(j)〉
(

4πr2
C60

σc
sin(QrC60)

QrC60

)2

+ 2〈p(i)〉(2πrhLσcJ0(Qrh))

×
(

4πr2
C60

σc
sin(QrC60)

QrC60

)]

J0 (QRij)

+2
∑

i

Int(QL/2π)〈p(i)p(i)〉
(

4πr2
C60

σc
sin(QrC60 )

QrC60

)2
}

.

(19)

During the course of the calculation terms containing
〈p(i)p(j)〉 arise, where p(i) is the filling factor of tube i:
p(i) = 1

Nc(i)

∑Nc(i)
n=1 f(i, n) where Nc(i) is the number of

C60 sites in tube i.
The filling rate of the sample, called 〈p〉 or p, is the

double average of f(i, n):

〈p〉 =
1

NT Nc

NT∑

i=1

Nc∑

n=1

f(i, n) (20)

where the number of C60 sites has been taken to be the
same for all tubes Nc(i) = Nc.

Three cases are considered.
(i) Homogeneous partial filling of the tubes with long

chains of C60, all tubes having the same mean filling
rate p, independent of i: p(i) = p, independent of i.

In that case, equation (19) becomes:

Ip(Q) =
(2π)2f2

s

QL2

[(

2πrhLσcJ0(Qrh)

+ p4πr2
C60

σc
sin(QrC60)

QrC60

)2∑

i,j

J0 (QRij)

+ 2NT Int(QL/2π)
(

p4πr2
C60

σc
sin(QrC60)

QrC60

)2
]

. (21)

The C60 form factor
[

4πr2
C60

σc
sin(QrC60)

QrC60

]

is multiplied
by the mean filling rate p. There is no other modification of
equation (18) because one assumes that the C60 molecules
agglomerate within nanotubes to form long chains.

(ii) Partial filling of the tubes with long chains of
C60 molecules, with filling rates different from one tube
to another within each bundle. In that case, one has to
consider that

〈p(i)p(j)〉 = 〈p2〉 if i = j

〈p(i)p(j)〉 = 〈p〉2 if i �= j (no correlation from one tube
to another). So that 〈p2〉 − 〈p〉2 �= 0.

For instance, one can consider within each bundle aver-
age proportions p of fully filled tubes and (1−p) of empty
tubes (which can be due to the fact that p% of the tubes
are opened and (1−p)% are closed), which gives: 〈p(i)〉 = p
and 〈p(i)p(i)〉 = p, then 〈p(i)2〉 − 〈p(i)〉2 = p(1 − p) �= 0.

The different fillings of nanotubes induce additional
disorder in direct space, which corresponds to diffuse scat-
tering in reciprocal space. The additional scattering is the
most intense at small Q values as in the case of chemical
disorder [22]. This approach is detailed in reference [33] for
partial filling of zeolite channels with nanotubes. Equa-
tion (18) becomes

Ip(Q) =
(2π)2f2

s

QL2

[(

2πrhLσcJ0(Qrh)

+ 〈p〉4πr2
C60

σc
sin(QrC60)

QrC60

)2∑

i,j

J0 (QRij)

+ NT

(〈p2〉 − 〈p〉2)
(

4πr2
C60

σc
sin(QrC60)

QrC60

)2

+ 2NT Int(QL/2π)〈p2〉
(

4πr2
C60

σc
sin(QrC60 )

QrC60

)2
]

. (22)

(iii) Nanotubes in the same bundle are all filled or all
empty, p% of the bundles corresponding to filled tubes and
(1-p)% to empty ones. The scattered intensity is the sum
of the intensities for p fully filled bundles and for (1 − p)
empty bundles. Equation (18) becomes:

Ip(Q) = p
(2π)2f2

s

QL2

[(

2πrhLσcJ0(Qrh)

+ 4πr2
C60

σc
sin(QrC60 )

QrC60

)2∑

i,j

J0(QRij)

+ 2NT Int(QL/2π)
(

4πr2
C60

σc
sin(QrC60 )

QrC60

)2
]

+ (1 − p)
(2π)2f2

s

QL2



(2πrhLσcJ0(Qrh))2
∑

i,j

J0(QRij)



 .

(23)
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Appendix C

This appendix details calculations in the case of poly-
merized C60 molecules inside the tubes. The chains
within the tubes are assumed to be formed of
n-polymers of C60 molecules. The distance between
bonded C60 molecules within a n-polymer is Lb, which
is smaller than the distance L between C60 neighbors be-
longing to different n-polymers. For instance, for n = 2,
one considers a chain of dimers and for n = 3 a chain of
trimers.

The form factor of a n-polymer of C60 molecules writes

Fn−polymer = 4πr2
C60

σc
sin(QrC60)

QrC60

(
n−1∑

k=0

eiQz(k− (n−1)
2 )Lb

)

= 4πr2
C60

σc
sin(QrC60)

QrC60

(

e−iQz
(n−1)

2 Lb
1 − eiQznLb

1 − eiQzLb

)

= 4πr2
C60

σc
sin(QrC60 )

QrC60

sin(Qz
nLb

2 )

sin(Qz
Lb

2 )

where (k − (n−1)
2 )Lb is the position of the C60 molecule

indexed by k within the n-polymer.
By replacing in equation (15) the monomer form

factor by that of the n-polymer and the period L along
the monomer chain by the one along the n-polymer chain,
which is (L + (n − 1)Lb), one obtains:

I( �Q) ∝ f2
s

[(

2πrh(L + (n − 1)Lb)σcJ0(Q‖rh)

× sin(Qz(L + (n − 1)Lb)/2)
Qz(L + (n − 1)Lb)/2

+ 4πr2
C60

σc
sin(QrC60)

QrC60

sin(Qz
nLb

2 )

sin(Qz
Lb

2 )

)2

δ(Qz)

+

(

4πr2
C60

σc
sin(QrC60 )

QrC60

sin
(

Qz
nLb

2

)

sin
(

Qz
Lb

2

)

)2

×
∑

k �=0

δ(Qz − 2πk/(L + (n − 1)Lb))

]

.

Powder average thus gives:

Ip(Q) ∝ f2
s

[

1
Q

(

2πrh(L + (n − 1)Lb)σcJ0(Qrh)

+ 4πr2
C60

σcn
sin(QrC60)

QrC60

)2

+
2
Q

(1 − δM,0)
M∑

k=1

(

4πr2
C60

σc
sin(QrC60)

QrC60

× sin(πknLb/(L + (n − 1)Lb))
sin(πkLb/(L + (n − 1)Lb))

)2]

where M is the integer part of (Q(L+(n−1)Lb

2π ); the term
(1 − δM,0) was introduced to avoid the case M = 0.
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29. L. Forró, L. Mihály, Rep. Prog. Phys. 64, 649 (2001)
30. T. Pichler, H. Kuzmany, H. Kataura, Y. Achiba, Phys.

Rev. Lett. 87, 267401 (2001)
31. L. Henrard, A. Loiseau, C. Journet, P. Bernier, Eur. Phys.

J. B 13, 661 (2000)
32. A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y.

Maniwa, S. Suzuki, Y. Achiba, Chem. Phys. Lett. 336,
205 (2001)

33. P. Launois, R. Moret, D. Le Bolloc’h, P.A. Albouy, Z.K.
Tang, G. Li, J. Chen, Solid State Comm. 116, 99 (2000)


